

gineer

ribs spaced at 3m centres. The effective span of the beam is 8m. LL on the floor is 4 kN/m^2 . Using M₂₀ concrete and Fe415 steel, design one of the intermediate T – beams. (20 Marks)

- 7 Design a RCC slab for an office floor $4.5m \times 5.5m$ with four edges discontinuous and corners held down. The LL on the slab is $3kN/m^2$. Assume floor finish as $0.6 kN/m^2$ and ceiling finish as $0.4kN/m^2$. Use M₂₀ grade concrete and Fe415 steel. Sketch the reinforcement. (20 Marks)
- 8 a. Distinguish between one way slab and two way slab. (04 Marks)
 - b. Design a Dog legged stair for an office building in a room measuring $2.8m \times 5.8m$, clear distance between floors is 3.6m. The width of the flight is to be 1.25m. Assume Live load of $3kN/m^2$. Use M_{20} grade concrete and Fe415 steel. Assume that the stair supported on 230mm at the outer edge of landing stairs. Sketch the reinforcement details. (16 Marks)
- 9 a. What is the role of transverse reinforcement in columns? What are the codal provisions to design transverse reinforcement? (06 Marks)
 - b. Explain the difference between Short columns and Long columns. (04 Marks)
 - c. A column size $300 \text{ mm} \times 400 \text{ mm}$ has an effective length of 3.6m and is subjected to $P_u = 1100 \text{ kN}$ and $M_u = 150 \text{ kN}$ m about the major axis. Assuming the bars on two sides. Design the column using M₂₅ concrete and Fe415 steel. (10 Marks)
- 10 Design an isolated footing for a rectangular column of $300 \text{mm} \times 500 \text{mm}$ supporting an axial load of 1500 kN factored. Assume SBC of soil as 185 kN/m^2 . Use M₂₀ grade concrete and Fe415 steel. Sketch the reinforcement and perform the necessary checks. (20 Marks)